o0
-
=
-
O
&
o,
O
—
L]
=
L]
5
<

Revision Guide

Contents

THE COUMSE OULIINE ..ttt st et e st st e s bt e e st e e e sbe e e saneesareeeneeesareas 2
ASSESSMENT OVEIVIEW...ceiiiuiiiieiiiittie sttt e et ee e s et e st e e e s s n e e e s st e e s sn s e ee s e ar e e e e s s nae e e e s reeeseanneneesenneeeesnanes 3
[Tt I o) (TP PO P ST UP TP 3
USEFUI WEDSITES ...t et ettt et esbe e beesbeesneeenne s 3
AT (o g I ={ U o [USSP 4
What do | need to revise for Computer SyStems (01)......cuueeeeeuiieieeiiieeeecieee e ceree e et e e eearae e e 4
What do | need to revise for Algorithms and programming (02)ceeeeiiieeeeiieieeciiee et 8
Command Words fOr the @XamS........cccueiiieiireeee ettt s see e e s 10
Tackling ESSAY QUESTIONSvviiiiiiiiee ettt e ceteeeeecttee e e ettt e e s sbteeeeettaeeeseabeeeeestaeeesansaseeaasssaessenseeeesanseeeanans 11
(101 ol = A3 Y7 1'0] o Yo | USRS 12

Additional useful supporting materials from the SPECcccceveciriiiiiiii e, 12

A-LEVEL Computer Science Revision Guidance

The course outline

Component 01: Computer systems

This component will introduce you to the internal workings of the Central Processing
Unit (CPU), the exchange of data and will also look at software development, data
types and legal and ethical issues. It is expected that you will draw on this
underpinning content when studying computational thinking, developing
programming techniques and devising your own programming approach in the
Programming project component (03).

Component 02: Algorithms and programming

This component will incorporate and build on the knowledge and understanding you
gained in the Computer systems component (01). You will understand what is meant
by computational thinking, the benefits of applying computational thinking to solving
a wide variety of problems and the principles of solving problems by computational
methods. You will be able to use algorithms to describe problems and analyse a
problem by identifying its component parts.

Assessment overview

Content Overview

Assessment Overview

» The characteristics of contemporary
processors, input, output and storage
devices

» Software and software development
* Exchanging data

+ Data types, data structures and
algorithms

* Legal, moral, cultural and ethical issues
» Elements of computational thinking
* Problem solving and programming

* Algorithms to solve problems and
standard algorithms

You will choose a computing problem to
work through according to the guidance

Computer systems
(01)
140 marks
2 hours and 30
minutes
written paper
(no calculators
allowed)

Worth 40% of
total
A-LEVEL

Algorithms and
programming (02%)
140 marks
2 hours and 30
minutes
written paper
(no calculators

Worth 40% of
total
A-LEVEL

in the specification. allowed)
Programming
* Analysis of the problem project
* Design of the solution 03 — Repository Wort? ,[2?% of
* Developing the solution 70 marks A LOE€/EL
« Evaluation Non-exam i
assessment
Exam dates
1/06/2020 Computer systems AM 2h 30m
9/06/2020 Algorithms and programming AM 2h 30m

Useful Websites

https://www.senecalearning.com/

https://ocr.orqg.uk/qualifications/as-and-a-level/computer-science-h046-h446-

from-2015/

https://student.craigndave.org/a-level-videos

https://www.learnpython.orqg/

https://www.youtube.com/channel/UC9-y-6csub5WGmM2917JiwpnA

Revision guides

COMPUTER
SCIENCE

COMPUTER
SCIENCE

OCR AS and A Level

Computer
Science

A/AS Level Computer
I Science for OCR
=i L

What do | need to revise for Computer systems (01)

1.1 The characteristics of contemporary processors, input, output and storage devices

Components of a computer and their uses

1.1.1 Structure and function of the processor

(a) The Arithmetic and Logic Unit; ALU, Control Unit
and Registers (Program Counter; PC, Accumulator;
ACC, Memory Address Register; MAR, Memory Data
Register; MDR, Current Instruction Register; CIR).
Buses: data, address and control: how this relates to
assembly language programs.

(b) The Fetch-Decode-Execute Cycle; including its
effects on registers.

(c) The factors affecting the performance of the CPU:
clock speed, number of cores, cache.

(d) The use of pipelining in a processor to improve
efficiency.

(e) Von Neumann, Harvard and contemporary
processor architecture.

1.1.2 Types of processor

(a) The differences between and uses of CISC and RISC
processors.

(b) GPUs and their uses (including those not related to
graphics).

(c) Multicore and Parallel systems.

1.1.3 Input, output and storage

(a) How different input, output and storage devices can
be applied to the solution of different problems.

(b) The uses of magnetic, flash and optical storage
devices.

(c) RAM and ROM.

(d) Virtual storage.

1.2 Software and software development

Types of software and the different methodologies used to develop software

1.2.1 Systems Software

(a) The need for, function and purpose of operating
systems.

(b) Memory Management (paging, segmentation and
virtual memory).

(c) Interrupts, the role of interrupts and Interrupt
Service Routines (ISR), role within the
Fetch-Decode-Execute Cycle.

(d) Scheduling: round robin, first come first served,
multi-level feedback queues, shortest job first and
shortest remaining time.

(e) Distributed, embedded, multi-tasking, multi-user
and Real Time operating systems.

(f) BIOS.

(g) Device drivers.

(h) Virtual machines, any instance where software
is used to take on the function of a machine,
including executing intermediate code or running
an operating system within another.

1.2.2 Applications Generation

(a) The nature of applications, justifying suitable
applications for a specific purpose.

(b) Utilities.

(c) Open source vs closed source.

(d) Translators:Interpreters, compilers and assemblers.

(e) Stages of compilation (lexical analysis, syntax
analysis, code generation and optimisation).

(f) Linkers and loaders and use of libraries.

1.2.3 Software Development

(a) Understand the waterfall lifecycle, agile
methodologies, extreme programming, the spiral
model and rapid application development.

(b) The relative merits and drawbacks of different
methodologies and when they might be used.

(c) Writing and following algorithms.

1.2.4 Types of Programming Language

(a) Need for and characteristics of a variety of
programming paradigms.

(b) Procedural languages.

(c) Assembly language (including following and writing
simple programs with the Little Man Computer
instruction set). See appendix 5d.

(d) Modes of addressing memory (immediate, direct,
indirect and indexed).

(e) Object-oriented languages (see appendix 5d
for pseudocode style) with an understanding of
classes, objects, methods, attributes, inheritance,
encapsulation and polymorphism.

1.3 Exchanging data

How data is exchanged between different systems

1.3.1 Compression, Encryption and Hashing

(a) Lossy vs Lossless compression.

(b) Run length encoding and dictionary coding for
lossless compression.

(c) Symmetric and asymmetric encryption.

(d) Different uses of hashing.

1.3.2 Databases

(a) Relational database, flat file, primary key, foreign
key, secondary key, entity relationship modelling,
normalisation and indexing. See appendix 5f.

(b) Methods of capturing, selecting, managing and
exchanging data.

(c) Normalisation to 3NF.

(d) SQL - Interpret and modify. See appendix 5d.

(e) Referential integrity.

(f) Transaction processing, ACID (Atomicity,
Consistency, Isolation, Durability), record locking
and redundancy.

1.3.3 Networks

(a) Characteristics of networks and the importance of
protocols and standards.
(b) The internet structure:
e The TCP/IP Stack.
e DNS
e Protocol layering.
e LANs and WANSs.
e Packet and circuit switching.
(c) Network security and threats, use of firewalls,
proxies and encryption.
(d) Network hardware.
(e) Client-server and peer to peer.

1.3.4 Web Technologies

(a) HTML, CSS and JavaScript. See appendix 5d.
(b) Search engine indexing.

(c) PageRank algorithm.

(d) Server and client side processing.

1.4 Data types, data structures and algorithms

How data is represented and stored within different structures. Different algorithms that can be applied to

these structures

1.4.1 Data Types

(a) Primitive data types, integer, real/floating point,
character, string and Boolean.

(b) Represent positive integers in binary.

(c) Use of sign and magnitude and two’s complement
to represent negative numbers in binary.

(d) Addition and subtraction of binary integers.

(e) Represent positive integers in hexadecimal.

(f) Convert positive integers between binary
hexadecimal and denary.

(g) Representation and normalisation of floating point
numbers in binary.

(h) Floating point arithmetic, positive and negative
numbers, addition and subtraction.

(i) Bitwise manipulation and masks: shifts, combining
with AND, OR, and XOR.

(j) How character sets (ASCIl and UNICODE) are used
to represent text.

1.4.2 Data Structures

(a) Arrays (of up to 3 dimensions), records, lists, tuples.

(b) The following structures to store data: linked-list,
graph (directed and undirected), stack, queue, tree,
binary search tree, hash table.

(c) How to create, traverse, add data to and remove
data from the data structures mentioned above.
(NB this can be either using arrays and procedural
programming or an object-oriented approach).

1.4.3 Boolean Algebra

(a) Define problems using Boolean logic. See
appendix 5d.

(b) Manipulate Boolean expressions, including the use
of Karnaugh maps to simplify Boolean expressions.

(c) Use the following rules to derive or simplify
statements in Boolean algebra: De Morgan’s Laws,
distribution, association, commutation, double
negation.

(d) Using logic gate diagrams and truth tables. See
appendix 5d.

(e) The logic associated with D type flip flops, half and
full adders.

1.5 Legal, moral, cultural and ethical issues

The individual moral, social, ethical and cultural opportunities and risks of digital technology. Legislation
surrounding the use of computers and ethical issues that can or may in the future arise from the use of
computers

1.5.1 Computing related legislation (a) The Data Protection Act 1998.

(b) The Computer Misuse Act 1990.

(c) The Copyright Design and Patents Act 1988.

(d) The Regulation of Investigatory Powers Act 2000.

1.5.2 Moral and ethical Issues The individual moral, social, ethical and cultural
opportunities and risks of digital technology:

Computers in the workforce.

Automated decision making.

Artificial intelligence.

Environmental effects.

Censorship and the Internet.

Monitor behaviour.

Analyse personal information.

Piracy and offensive communications.

e Layout, colour paradigms and character sets.

What do | need to revise for Algorithms and programming (02)

2.1 Elements of computational thinking

Understand what is meant by computational thinking

2.1.1 Thinking abstractly (a) The nature of abstraction.
(b) The need for abstraction.
(c) The differences between an abstraction and reality.
(d) Devise an abstract model for a variety of situations.

2.1.2 Thinking ahead (a) Identify the inputs and outputs for a given situation.

(b) Determine the preconditions for devising a solution
to a problem.

(c) The nature, benefits and drawbacks of caching.

(d) The need for reusable program components.

2.1.3 Thinking procedurally (a) Identify the components of a problem.

(b) Identify the components of a solution to a problem.

(c) Determine the order of the steps needed to solve a
problem.

(d) Identify sub-procedures necessary to solve a
problem.

2.1.4 Thinking logically (a) Identify the points in a solution where a decision
has to be taken.

(b) Determine the logical conditions that affect the
outcome of a decision.

(c) Determine how decisions affect flow through a
program.

2.1.5 Thinking concurrently (a) Determine the parts of a problem that can be
tackled at the same time.

(b) Outline the benefits and trade offs that might result
from concurrent processing in a particular situation.

2.2 Problem solving and programming

How computers can be used to solve problems and programs can be written to solve them
(Learners will benefit from being able to program in a procedure/imperative language and object oriented
language.)

2.2.1 Programming techniques (a) Programming constructs: sequence, iteration,
branching.

(b) Recursion, how it can be used and compares to an
iterative approach.

(c) Global and local variables.

(d) Modularity, functions and procedures, parameter
passing by value and by reference.

(e) Use of an IDE to develop/debug a program.

(f) Use of object oriented techniques.

2.2.2 Computational methods (a) Features that make a problem solvable by
computational methods.

(b) Problem recognition.

(c) Problem decomposition.

(d) Use of divide and conquer.

(e) Use of abstraction.

(f) Learners should apply their knowledge of:
e backtracking
e data mining

heuristics

performance modelling

pipelining

visualisation to solve problems.

2.3 Algorithms

The use of algorithms to describe problems and standard algorithms

2.3.1 Algorithms (a) Analysis and design of algorithms for a given
situation.

(b) The suitability of different algorithms for a given
task and data set, in terms of execution time and
space.

(c) Measures and methods to determine the efficiency
of different algorithms, Big O notation (constant,
linear, polynomial, exponential and logarithmic
complexity).

(d) Comparison of the complexity of algorithms.

(e) Algorithms for the main data structures, (stacks,
queues, trees, linked lists, depth-first (post-order)
and breadth-first traversal of trees).

(f) Standard algorithms (bubble sort, insertion sort,
merge sort, quick sort, Dijkstra’s shortest path
algorithm, A* algorithm, binary search and linear
search).

Command Words for the exams

Command Meaning

words

Add Join something to something else so as to increase the size, number, or
amount.

Annotate Add brief notes to a diagram or graph.

Calculate Obtain a numerical answer showing the relevant stages in the working.

Complete Provide all the necessary or appropriate parts.

Convert Change the form, character, or function of something.

Define Give the precise meaning of a word, phrase, concept or physical
quantity.

Design Produce a plan, simulation or model.

Draw Produce (a picture or diagram) by making lines and marks on paper with
a pencil, pen, etc.

Give Present information which determines the importance of an event or
issue. Quite often used to show causation.

Outline Give a brief account or summary.

How In what way or manner; by what means.

Identify Provide an answer from a number of possibilities. Recognise and state
briefly a distinguishing factor or feature.

Label Add title, labels or brief explanation(s) to a diagram or graph.

List Give a sequence of brief answers with no explanation.

Order Put the responses into a logical sequence.

Outline Give a brief account or summary.

Show Give steps in a derivation or calculation.

Solve Obtain the answer(s) using algebraic and/or numerical and/or graphical
methods.

State Give a specific name, value or other brief answer without explanation or
calculation.

Tick Mark (an item) with a tick or select (a box) on a form, questionnaire etc.
to indicate that something has been chosen.

What Asking for information specifying something.

Tackling Essay Questions

It is important when revising for essay-style examinations that you are familiar with the wording that
may be used for the question.

Command Meaning

words

Analyse Break down in order to bring out the essential elements or structure. To
identify parts and relationships, and to interpret information to reach
conclusions.

Compare Give an account of the similarities and differences between two (or more)
items or situations, referring to both (all) of them throughout.

Describe Give a detailed account or picture of a situation, event, pattern or

process

Differentiate

Explore and explain the differences.

Discuss Offer a considered and balanced review that includes a range of
arguments, factors or hypotheses. Opinions or conclusions should be
presented clearly and supported by appropriate evidence.

Evaluate Assess the implications and limitations; to make judgements about the
ideas, works, solutions or methods in relation to selected criteria.

Explain Give a detailed account including reasons or causes.

Justify Give valid reasons or evidence to support an answer or conclusion.

Try to use the following writing frame as a ‘recipe’ to construct your answer so that you are
presenting a balanced view point that meets mark band 3.

The Recipe — for essay type exam questions

Introduction

+ Impact Consequence - Impact Consequence
+ Impact Consequence - Impact Consequence
+ Impact Consequence - Impact Consequence

Conclusion

Flowchart symbols

Flow charts

Flow charts like pseudocode are informal but the most common flow chart shapes are:

Line An arrow represents control passing between the
_— connected shapes.
Process This shape represents something being performed
or done.
Sub Routine This shape represents a subroutine call that will
relate to a separate, non-linked flow chart
Input/Output This shape represents the input or output of
E something into or out of the flow chart.
Decision This shape represents a decision (Yes/No or
True/False) that results in two lines representing
the different possible outcomes.
Terminal This shape represents the “Start” and “End” of the

Additional useful supporting materials from the spec

The next few pages are taken from the specification. Please familiarise yourself with the specific
notation adopted by OCR for the various technical topics.

Variables
Variables are assigned using the = operator.

x=3
name="“Bob”

A variable is declared the first time a value is assigned. It assumes the data type of the value it is given.
Variables declared inside a function or procedure are local to that subroutine.

Variables in the main program can be made global with the keyword global.
global userid = 123

Casting
Variables can be typecast using the int str and float functions.

str (3) returns “3”
int (“3”) returns 3
float (“3.14”) returns3.14

Outputting to Screen
print (string)

Example
print (“hello”)

Taking Input from User
variable=input (prompt to user)

Example
name=input ("Please enter your name”)

Iteration — Count Controlled
for i=0 to 7

print (“Hello”)
next 1

Will print hello 8 times (07 inclusive).

Iteration — Condition Controlled
while answer!="computer”

answer=input (“What is the password?”)
endwhile

do
answer=input (“What is the password?”)
until answer=="computer”

© OCR 2016
32 A Level in Computer Science

Logical Operators
AND OR NOT

e.g.

while x<=5 AND flag==false

Comparison Operators

== Equal to

I= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

Arithmetic Operators

+ Addition e.g. x=6+5 gives 11
- Subtraction e.g. x=6-5 gives 1
* Multiplication e.g. x=12*2 gives 24
/ Division e.g. x=12/2 gives 6
MOD Modulus e.g. 12MOD5 gives 2
DIV Quotient e.g. 17DIVS5 gives 3
» Exponentiation e.g. 374 gives 81
Selection

Selection will be carried out with if/else and switch/case

if/else

if entry=="a” then

print (“You selected A”)
elseif entry=="b” then

print (“You selected B”)
else

print (“Unrecognised selection”)

endif

switch/case
switch entry:
case “A":

print (“You selected A”)

case “B”:1

print (“You selected B”)

default:

print (“Unrecognised selection”)

endswitch

© OCR 2016
A Level in Computer Science

33

String Handling

To get the length of a string:
stringname.length

To get a substring:

stringname.subString (startingPosition, numberOfCharacters)
NB The string will start with the Ot character.

Example
someText="Computer Science”

print (someText.length)
print (someText.substring (3, 3))

Will display

16
put

Subroutines

function triple (number)
return number*3
endfunction

Called from main program
y=triple(7)

procedure greeting (name)
print (“*hello”+name)
endprocedure

Called from main program
greeting (“Hamish”)

Unless stated values passed to subroutines can be assumed to be passed by value.
If this is relevant to the question byVal and byRef will be used. In the case below x is passed by value and y is
passed by reference.

procedure foobar (x:byVal, y:byRef)

endprocedure

© OCR 2016
34 A Level in Computer Science

Arrays

Arrays will be 0 based and declared with the keyword array.

array names|[5]
names [0]="Ahmad”
names[1]="Ben”
names[2]="Catherine”
names [3]="Dana”

[

names =

1
2
3
41="Elijah”

]
]
]
print (names[3])

Example of 2D array:
Array board[8, 8]
board[0,0]="rook”

Reading to and Writing from Files

To open a file to read from openRead is used and readLine to return a line of text from the file.
The following program makes x the first line of sample.txt

myFile = openRead (“sample.txt”)
x = myFile.readLine ()
myFile.close()

endOfFile () is used to determine the end of the file. The following program will print out the contents of
sample.txt

myFile = openRead (“sample.txt”)

while NOT myFile.endOfFile ()
print (myFile.readLine ())

endwhile

myFile.close()

To open a file to write to openWrite is used and writeLine to add a line of text to the file. In the program below
hello world is made the contents of sample.txt (any previous contents are overwritten).

myFile = openWrite (“sample.txt”)
myFile.writeLine (“Hello World”)
myFile.close ()

Comments

Comments are denoted by //

print (“Hello World”) //This is a comment

© OCR 2016
A Level in Computer Science 35

Object-Oriented

Object oriented code will match the pseudocode listed above with the following extensions:

Methods and Attributes:

Methods and attributes can be assumed to be public unless otherwise stated. Where the access level is relevant to
the question it will always be explicit in the code denoted by the keywords.

public and private.
private attempts = 3

public procedure setAttempts (number)
attempts=number
endprocedure

public function getAttempts ()
return attempts
endfunction

Methods will always be instance methods, learners aren’t expected to be aware of static methods. They will be
called using object.method so

player.setAttempts (5)
print (player.getAttempts())

Constructors and Inheritance

Inheritance is denoted by the inherits keyword, superclass methods will be called with the keyword super.
i.e. super .methodName (parameters) in the case of the constructor this would be super.new ()
Constructors will be procedures with the name new.

class Pet

private name
public procedure new (givenName)
name=givenName

endprocedure

endclass

class Dog inherits Pet
private breed

public procedure new(givenName, givenBreed)
super.new (givenName)
breed=givenBreed

endprocedure

endclass

© OCR 2016
36 A Level in Computer Science

Constructors and Inheritance
Constructors will be procedures with the name new.

class Pet

private name
public procedure new (givenName)
name=givenName

endprocedure
endclass

Inheritance is denoted by the inherits keyword, superclass methods will be called with the keyword super.
i.e. super .methodName(parameters) in the case of the constructor this would be super.new ()

class Dog inherits Pet
private breed

public procedure new(givenName, givenBreed)
super.new (givenName)
breed=givenBreed

endprocedure

endclass

To create an instance of an object the following format is used
objectName = new className (parameters)
e.g.

myDog = new Dog (“Fido”, “Scottish Terrier”)

HTML

Learners are expected to have an awareness of the following tags. Any other tags used will be introduced in the
question.

<html>
<link> to link to a CSS file
<head>

<title>

<body>

<hl> <h2> <h3>

 including the src, alt, height and width attributes.
<a> including the href attribute.

<div>

© OCR 2016
A Level in Computer Science 37

<form>

<input> where the input is a textbox (i.e. has the attribute t ype="text” and another attribute name to
identify it) or a submit button (i.e. has the attribute t ype="submit”)

<p>

<script>

Any other elements used will be explained in the question.

CSS

Learners are expected to be able to use CSS directly inside elements using the style attribute
<hl style="color:blue;”>
and external style sheets. In the style sheets they should be able to use CSS to define the styling of elements:

hl{
color:blue;

}

classes

.infoBox/{
background-color: green;

}

and Identifiers

#menu {
background-color: #A2441B;

}
They are expected to be familiar with the following properties.

background-color

border-color

border-style

border-width

color with named and hex colours
font-family

font-size

height

width

Any other properties used will be explained in the question.

© OCR 2016
38 A Level in Computer Science

JavaScript

Learners are expected to be able to follow and write basic JavaScript code. It is hoped they will get practical
experience of JavaScript in their study of the course. They will not be expected to commit exact details of syntax
to memory. Questions in the exam will not penalise learners for minor inaccuracies in syntax. Learners will be
expected to be familiar with the JavaScript equivalents of the structures listed in the pseudocode section (with
the exception of input and output (see below). They will not be expected to use JavaScript for Object Oriented
programming or file handling. Questions will not be asked in JavaScript where something is passed to a subroutine
by value or reference is relevant.

Input

Input will be taken in by reading values from a form. NB learners will not be expected to memorise the method for
doing this as focus will be on what they do with that input once it is received.

Output

By changing the contents of an HTML element
chosenElement = document.getElementById (“example”);
chosenElement.innerHTML = “Hello World”;

By writing directly to the document
document .write (“Hello World”) ;

By using an alert box
alert (“Hello World”);

Any other JavaScript used will be explained in the question.

Little Man Computer Instruction Set

In questions mnemonics will always be given according to the left hand column below. Different implementations
of LMC have slight variations in mnemonics used and to take this into account the alternative mnemonics in the
right hand column will be accepted in learners’ answers.

Mnemonic Instruction Alternative mnemonics
accepted
ADD Add
SUB Subtract
STA Store STO
LDA Load LOAD
BRA Branch always BR
BRZ Branch if zero Bz
BRP Branch if positive BP
INP Input IN, INPUT
ouT Output
HLT End program COB, END
DAT Data location
© OCR 2016

A Level in Computer Science 39

Structured Query Language (SQL)

Learners will be expected to be familiar with the structures below. Should any other aspects of SQL be used they
will be introduced and explained in the question.

SELECT (including nested SELECTSs)

FROM

WHERE

LTKE

AND

OR

DELETE

INSERT

DROP

JOIN (Which is equivalent to INNER JOIN, there is no expectation to know about outer, left and right joins)

WILDCARDS (Learners should be familiar in the use of “*’ and ‘%’ as a wildcard to facilitate searching and
matching where appropriate)

Boolean Algebra

When Boolean algebra is used in questions the notation described below will be used. Other forms of notation
exist and below are also a list of accepted notation we will accept from learners.

Conjunction

Notation used:

N e.g. AAB
ENEXNREYCH
T T T
T | F F
FloT F
F|F F

Alternatives accepted:

AND e.g. AANDB
e.g.AB

© OCR 2016
40 A Level in Computer Science

Disjunction

-

Notation used:
\V e.g. AVB

| A lB] ave

T

m| M| |-
M| || A

T
T
F

Alternatives accepted:

OR eg.AORB
+ e.g. A+B

Negation

Notation used:
— e.g. —A

T F
FloT

Alternatives Accepted:
bar e.g. A

~ e.g.~A

NOT e.g. NOTA

© OCR 2016
A Level in Computer Science 41

Exclusive Disjunction

D~

Notation used:
\ e.g.AvB

[A] B | ave |

m| M| |-
M|~ |m| A
T R B e g |

Alternatives accepted:

XOR e.g. AXORB
@® e.g. A®B

Equivalence / Iff
Notation used:

Alternatives accepted:
>

42

© OCR 2016
A Level in Computer Science

